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LEmER TO THE EDITOR 

Path integral on S2: The Rosen-Morse oscillator 

A Inomata and M A Kayed 
Department of Physics, State University of New York at Albany, Albany, NY 12222, USA 

Received 23 January 1985 

Abstract. Guided by the group chain SO(3) 3 0 ( 2 ) ,  we construct an angular path integral 
for the symmetric Rosen-Morse oscillator on S2. By explicit path integration, we obtain 
the normalised energy eigenfunction as well as the exact energy spectrum. 

In recent years, some useful techniques have been developed in path integral calcula- 
tion. For example, the change of variables in a path integral is not all practical, but 
the time rescaling trick has made coordinate transformations more widely applicable. 
With the aid of such new techniques, the listing of exactly path-integrable examples 
has been increased, which includes the Aharonov-Bohm effect (Inomata and Singh 
1978, Bernido and Inomata 1981), the hydrogen atom (Duru and Kleinert 1979, Ho 
and Inomata 1982, Inomata 1984), the entanglement probability of macromolecules 
(Tanikella and Inomata 1982), the Morse oscillator (Cai et a1 1983, Duru 1983), the 
Dirac-Coulomb problem (Kayed and Inomata 1984) and the charge-monopole system 
(Durr et a1 1984). Now we are generally able to evaluate a path integral if it is 
intrinsically reducible in the short time limit to a confluent hypergeometric equation. 
In this connection, it is interesting to point out that most of the examples so far known 
as path-integrable are of S O ( n )  xSO(2, 1 )  symmetry ( n  s 3). 

Recently, from various aspects (Brezin et a1 1977, Yoon and Negele 1977, Nieto 
1978, Alhassid et a1 1983, 1984, Frank and Wolf 1984), there has been renewed interest 
in the Rosen-Morse potential (Rosen and Morse 1932) of the symmetric form, 

V ( x )  = -B  sech’ ax ( 1 )  
where a and B are positive constants. Apparently, the one-dimensional Cartesian path 
integral for this potential is not Gaussian. The Schrodinger equation with ( 1 )  is not 
reducible to a confluent hypergeometric equation. Certainly this does not belong to 
the current list of path-integrable examples. However, the group theoretical analysis 
(Alhassid et a1 1983, 1984, Frank and Wolf 1984) indicates that a group chain relevant 
to this system is SO(3) 2 O(2). In the present paper, guided by the group chain, we 
propose a new method of evaluating Feynman’s path integral for the symmetric 
Rosen-Morse oscillator-the bound states in (1).  First, we construct a path integral 
on S 2 =  S0(3) /0(2)  for the Green function of the oscillator with the Lagrangian 

L = fmx’+ B sech’ ax (2) 
where we set B = A ( A  - l)(h2a2/2m) with A > 1. Then we calculate the path integral 
explicitly to find the energy spectrum and the normalised energy eigenfunctions 
consistent with those derived from the Schrodinger equation (Nieto 1978). The con- 
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structed path integral on S 2  is a special case of the polar coordinate path integral 
considered earlier (Edwards and Gulyaev 1964, Peak and Inomata 1969). 

Let us start by writing Feynman’s propagator in the form, 

K(x”,  x’; t”, t ‘ )  = ( 2 A ) - ’  P(x“, x’; r )  exp[-iE(t”- t’)/h] d r  dE, (3) 

where 

P ( x ” , x ’ ;  T)= 1 exp((i/h) I T  ( L + E ) d t ) d x .  

The corresponding Green function in the energy representation is 

G(x”, x’: E)  = (ih)-’ P(x”, x‘; 7) dr. 5 

(4) 

The path integral (4) for the Lagrangian (2) may be written on the sliced time basis as 

1/2  N-l  

P(x”,  x’; T) = lim 

with a modified short time action, 

~ = ( m / 2 ~ ; . ) ( A x ~ ) ~ + B r ~  sech ax, sech a x j - l + E ~ j ,  (7)  

where x, = x ( t J ) ,  Ax, = xJ -x,-,, T, = fJ - c,-~ and r = Z N r Y  Note that in (7)  the terms 
of O ( r f )  have been ignored as usual. 

Evidently, (6) is not integrable by the x-variable. In an effort to reduce (6) into 
an integrable form, we transform x, E (-00, CO) into an angular variable 0, E [0, T) and 
the local time interval U, by 

sech ax, = sin e,, r, = uJ,/sin2 6 (8) 

where sin2 6 = sin 0, sin In the new variables, (6) becomes 

with 

+ EUj + Buj 
w,=---- m(Ae)2  m ( A 1 3 ) ~  m(Ae)4 

2a2uj 24a2aj 24a2uj sin2 e  ̂ sin2 b 
In the above, we have suppressed the subscript j of 0, and hereafter whenever 
appropriate we shall do the same for 8 and others. 

The transformed action (10) is by no means simpler. The first step otsimplifying 
(10) is to replace the third term by an equivalent one, h 2 a 2 a j / ( 8 m  sin2 e) .  This can 
be justified by the relation valid for large a > 0, 

5; y 2 “  e x p [ - a y 2 + P y 4 + p ’ y 4 + O ( y 6 ) ]  dy 

y2“ e ~ p [ - a y ’ + p y ~ + $ P ‘ a - ~ + O ( a - ~ ) ]  dy, 
= 5: 
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where c is a constant and n a positive integer. For c+m, ( 1  1 )  is quite obvious (Cai 
er a1 1983). Noticing that 

a - 1 / 2 c  

exp(iay’)f(y) dy = I, exP(iaY21f(a-1/2Y) dy, 

we can assure that (1 1 )  is valid for any c insofar as a is large. We also remind ourselves 
that in a path integral (At) - ’  cos(A8) =[1 -$(A8)2+(A8)4/24]/(At) is a valid approxi- 
mation for an angular variable (Edwards and Gulyaev 1964). Thus we can write the 
action (10) in a simpler form, 

W, = ( m /  a2uj)[ 1 - cos(AB)] + ( uj/sin2 e*)[ E + (h2a2/8m)] + Buj. ( 12) 

The path integral (9), even having (12), is not yet ready for integration. We have 
to go one more step further by introducing another angular variable + ~ [ 0 , 2 7 ~ ] .  
Namely, we put the second term of (12), multiplied by (i/h) and exponentiated, into 
the form, 

exp{(iuj/h sin’ $ ) [ E  +(h2a2/8m)]} 

= (m sin2 e * / 8 ~ i h a ~ u ~ ) ‘ / ~  exp[(im sin2 e*/ha2uj) 

x ( i  -COS A+)+ikb+]d(A+) (13) 

where k = ( - 2 m E / h ’ ~ ~ ) I / ~ .  For this, we have used the approximation formula for 
large z and an integer k, 

271 

exp[ik(p -z(1 -cos (p)] d(p = (87~/z)’/’ exp[-(k2-t)/2z]. (14) 
l - l n  

With the help of an integral representation and the asymptotic formula of the modified 
Bessel function (Langguth and Inomata 1979), 

I k ( z ) = ( 2 ~ z ) - 1 / 2  exp[z-(k2-$)/2z], (15) 
we can easily derive (14). Moreover, noticing that for f ( A 4  + 2 ~ )  = f ( A 4 )  

f(A4) d ( W )  = 2  [02nf(A4) d4,  
-27r 

we combine (12) and (13) together to obtain 

exp(i W,/h )  = (m sin’ e * / 2 7 ~ i h a ~ u ~ ) ~ / ~  exp(iBuj/h) 
f 2 n  

x J exp(ik A 4 j )  exp[im( 1 -cos @)/fia2uj] d4j (17) 
0 

where cos 0 =cos 8, cos +sin 0, sin COS(A+~). Substitution of (17) into (9) 
yields 

f ’ r  
P ( x ” ,  x’; 7) = a sin elsin et’ exp(iBa/h) J Q( e”, e‘; 4”; U) d 4 ”  

0 

where sin 8’ = sech ax”, sin e’’= sech ax“, 4‘ = 0 and U = r sech ax’ sech ax“. The 
integrand of (18) is indeed a path integral on S2, 

N N-l 
Q( e”, 8’; 4”;  U) = lim exp(i % / h )  n ( m / 2 ~ i h a ~ u ~ )  fl sin 0, dej dqbj (19) 

j =  I j = l  
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with 

r ? l , = ( m / a 2 a , ) ( l - c o s 0 j ) + h k A 4 j ,  (20) 

which is now integrable (Edwards and Gulyaev 1964, Peak and Inomata 1969). The 
Green function (5) and the propagator (3) are therefore evaluated, respectively, by 

G(xf’, x’; E )  = (a / ih)  

and 

Q( e’’, 8’; 4“; a )  exp(iBa/h) d4f ’  d a  (21) I_: loZ= 
03 

K ( x ” ,  x’; t”,  t ‘ )  = (i/27r) G(x”, x‘; E )  exp[-iE(t”- t’)/h] dE. (22) 

The path integration of (19) on S 2  is rather straightforward. Employing the standard 

1 - m  

expansion formula, 
oc 

exp(u c o s 0 ~ ) = ( r / 2 u ) ’ / 2  1 i ( z ~ + i ) [ r ( ~ - ~ + i ) / r ( ~ + ~ + i ) ~  
I = O  p = - /  

and the asymptotic relation ( 1 9 ,  we get for (20) 

exp( iq /h)=( iha20; /m)  c 1 [ ( i + $ ) r ( i - p +  i ) / r ( i + p +  I ) ]  
C C I  

I = O  p = - I  

xexp[-i1(1+ l)ha2aj/2m] exp[i(p + k)A4j]Pt”(cos Bj)PY(cos O j - , ) .  
(24) 

Here also the j subscripts of 1 and p are suppressed. With (24), we can readily carry 
out the angular integrations in (19) by using the orthogonality relations of the 
exponential functions and the associated Legendre functions. As a result of the angular 
integrations, we find 

m 

Q(v, e’ ; ” ’ ;a)= c i [ (1+f)r(1-~+1)/2~r(1+~+1)1 
I = O  p=-I 

xexp[-iI(I+ l )ha2a/2m] exp[i(p + k)~$”]Pr(cos 8’)Pr(cos 8’l) (25) 
where I =  I” and p = p“. Now, inserting this into (21), completing the remaining 
integrations and summing over p, we arrive at 

G(x”, x’; E )  = (a/ih)[2.rrm/ha2(A -f)] 
m 

[ ( I + i ) T ( I +  k +  l)/r(I- k +  l ) ]  
I = O  

X ~ ( A  - I -  i)P;“(cos e’)p;k(cos 8”) (26) 
where we have set B = A ( A  - l)h2a2/2m. As the terms for I < k vanish due to the r 
function in the denominator, we set n = I - k to rewrite (26) in the form, 

G(x”, x’; E )  = (2rm/ih2a)  c [r(2A - n - l) /T(n + l ) ]  
m 

n = O  

X S(A - n - k -  l)P;I:-’(tanh ax‘)P”,;-l(tanh axf’). (27) 
Since k = (-2mE/h2a2)l” and hence S(A - n - k -  1 )  = ( h 2 a 2 / m ) ( A  - n - 1)  x 
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S [ E  + ( A  - n - 1)2h2a2/2m], the E integration of (22) yields 
m 

~ ( x ” ,  x’; t”, t’) = 2 (LX(X’)(L,(X’’) exp[-iE,(t”- t’)/h] (28) 
n = O  

where 

E,  = -(h2a2/2m)(A - n - 1 ) 2  

4, = [ a ( A  -n- l ) r (2A - n -  l ) /T(n+ l)]l’ZP”,~+l(tanh ax) 

n = 0 ,  1,2 , .  . . C A  - 1  (29) 

(30) 

which are the exact energy spectrum of the symmetric Rosen-Morse oscillator and the 
corresponding normalised wavefunction consistent with those obtained from the 
Schrodinger equation (Nieto 1978). Although our calculation has been made fo: 
A =integer> 1, it is easy to continue (28) analytically for A =non-integer> 1. One of 
the advantages of the path integral calculation is that the resultant propagator, satisfying 
the limiting condition K(x”, x’; t ” +  t ’ )  = 8(x”-x’), leads naturally to the wavefunction 
with a correct normalisation factor. The present angular path integration method can 
be applied to the symmetric Poschl-Teller oscillator as well. 
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